

The Department of Computer Science

CIS4503 Databases
Coursework 1

2024/2025

Database Feasibility and Legal Compliance for Building a
Robust Movie Search Engine

Student Name: Sunday Idika

Student ID: ****

 2

Table of Contents

Title page

1. Introduction---3

1.1 Background………………………………………………………………………..3

1.2 Purpose and Objectives……………………………………………………….3

1.3 Scope……………………………………………………………………………….4

2. Literature Review---4

2.1 Overview of Database Types or Alternatives…………………………….4

2.2 Strengths and Weaknesses……………………………………………………5

2.3 Legal and Regulatory Considerations------------------------------------6

2.4 Critical Analysis--7

3. Addressing the Requirements--8

3.1 Requirement 1: Dynamic Schema Updates………………………………8

3.2 Requirement 2: Scalability to Millions of Records……………………...8

3.3 Requirement 3: Data Consistency Across Cluster Nodes……………9

3.4 Requirement 4: High Availability………………………………………………9

4. Recommendations--10

4.1 Restate the Objective--10

4.2 Summarize Key Findings--10

4.3 Recommendation of Database Type--------------------------------------10

4.4 Recommendation of Database Engine-----------------------------------10

4.5 Legal Implications---11

4.6 Expected Benefits---11

4.7 Conclusion---11

5. References--12

 3

1. Introduction
1.1 Background Information
Project Overview:
The project at hand involves the development of an online movie search engine
designed to provide users with an efficient way of searching and exploring movie
metadata. The goal is to create a tool that offers detailed information about movies,
such as titles, genres, budgets, directors, actors, and other associated data. To
effectively manage and support the diverse and dynamic nature of this movie data,
the system will require a robust and scalable database solution.

The platform will begin by handling 5,000 movie records, but as the user base grows,
it is expected to scale significantly, managing millions of movie entries. Thus, selecting
an appropriate database system is crucial to ensuring fast, efficient query
performance, data consistency, easy scalability, and a smooth user experience.
Additionally, given the nature of the sensitive information involved, including
potential personal data of users, the system must comply with data protection
regulations to ensure privacy and security.

Figure 1

Figure 1 shows the basic system architecture for the movie search engine. Cemil Abis
and Murat Osman Unalir (2017) provided a detailed study stating the importance of
enhancing the search capabilities of document management systems.
Explanation:

• User Interface: Users access the system through a browser or application
interface.

• Application Logic: The backend processing layer handles user requests.
• Database: The database layer stores and retrieves data, interacting with the

backend.

 4
• Flow of Data: Arrows illustrate data flow between components (e.g., user

queries -> application -> database).
1.2 Purpose and Objectives
Purpose of the Feasibility Study

• Problem Statement: The feasibility study seeks to evaluate and identify the
most suitable database type to store and manage an online search engine's
extensive and evolving movie metadata. The challenge is to choose between
relational databases and document-based databases, assessing each for
suitability in terms of scalability, flexibility, and compliance with data
protection laws.

Objectives:
• Analyze the strengths and weaknesses of at least two types of databases

(Relational and Document Databases).
• Evaluate how each database type aligns with key project requirements, such as

dynamic schema updates, scalability, availability, and data consistency.
• Ensure each database meets legal requirements like compliance with GDPR,

CCPA, and other data protection frameworks.
• Recommend a database type that best suits the project’s goals, including a

specific database engine (e.g., MySQL, MongoDB).
1.3 Scope
Database Types
This study will focus on Relational Databases (e.g., MySQLSQL) and Document
Databases (e.g., MongoDB), analyzing their potential benefits and limitations.

• Relational Databases (RDBMS) are typically used for structured data with fixed
schema constraints, where the relationships between data entities are well-
defined.

• Document Databases (e.g., MongoDB) are highly flexible databases that store
data as documents (e.g., JSON-like formats). These are ideal for handling
dynamic, unstructured, or semi-structured data that may evolve over time.

Assumptions and Limitations
• The initial dataset will consist of 5,000 movie records, with the potential to

scale to millions of records in the future.
• The study assumes that both database types can be adequately scaled to

handle large datasets, and that appropriate legal and security measures will be
implemented.

• Performance benchmarks such as query speed and cost of scaling are
important but will depend on specific configurations.

• The study will not consider NoSQL database options beyond document-based
databases.

2. Literature Review
2.1 Overview of Database Types or Alternatives
Description of Options

• Relational Database: A relational database organizes data into tables with
predefined schema, where relationships between data are established through
keys (primary, foreign). Data is stored in rows and columns, and the database
uses Structured Query Language (SQL) for data management (Do et al., 2022).

o Examples: MySQL, PostgreSQL, Oracle DB.
o Use Cases: Relational databases are ideal for applications requiring

structured, consistent data management, such as banking systems,

 5
enterprise resource planning (ERP) systems, and inventory
management (Hosen, et al., 2024).

• Document Database: A document database is a type of NoSQL database
where data is stored in flexible, schema-less documents, often in JSON or
BSON formats. These databases provide the ability to handle semi-structured
or unstructured data (MongoDB, 2024).

o Examples: MongoDB, CouchDB, RavenDB.
o Use Cases: Document databases are particularly effective for content

management systems, e-commerce platforms, real-time analytics,
and applications with dynamically changing datasets (Ngcobo et al.,
2024).

Core Features
• Relational Databases:

o Structured schema: Requires predefined tables with fixed columns
(Martins et al., 2023).

o Strong consistency: Relational databases use ACID properties to ensure
transactions are fully completed or fully rolled back (Guo et al., 2022)).

o SQL querying: Users query data using a structured language (SQL).
• Document Databases:

o Flexible schema: Allows documents to have different structures, which
is especially beneficial for applications with dynamic data (ALI et al.,
2023)

o Scalable architecture: Optimized for scaling out via horizontal
distribution across multiple nodes (MongoDB, 2024).

o JSON-based queries: Queries typically use a structure similar to the
JSON format.

The summary of the database comparison is provided in Table 1.

2.2 Table 1: Strengths and Weaknesses

Feature Relational Database Document Database

Schema Fixed; predefined table
structure.

Flexible; schema-less; can
store dynamic data
structures.

Ease of Use

Requires design up front
and strict data definitions.

Easy to change or evolve
schema; however, more
complex operations may
require deep knowledge
of the document
structure.

Scalability Vertical scaling (limits
depend on hardware),
difficult to horizontally
scale.

Horizontal scaling;
suitable for distributed
systems.

Data Consistency Strong consistency (ACID
compliant)

Eventual consistency
(BASE model); more
tolerant to downtime.

 6
Performance Slower on large-scale

operations or when data
structure changes.

Optimized for high-
performance read/write
on large-scale, distributed
data.

Maintenance Mature tools, well-
defined indexing and
optimization strategies.

Complex replication
management; suitable for
agile development with
frequent changes.

Query Language SQL-based query
language with complex
querying capabilities.

Typically uses JSON-like
queries, more suited to
simpler queries.

Figure 2

Figure 2 is a bar chart comparing SQL and MongoDB across the attributes of Speed,
Scalability, and Flexibility:

• SQL performs moderately on speed but falls behind in scalability and flexibility.
• MongoDB demonstrates strong performance in scalability and flexibility, with

slightly better speed.

2.3 Legal and Regulatory Considerations
Outline of Legal Requirements for Storing, Accessing, and Managing Data
Regulatory frameworks such as GDPR (General Data Protection Regulation), HIPAA
(Health Insurance Portability and Accountability Act), and CCPA (California
Consumer Privacy Act) dictate specific requirements on how data should be
protected, stored, accessed, and processed (See Table 2). These include aspects such
as data encryption, access control, reporting requirements, and data residency.

GDPR: It mandates explicit consent from data subjects to collect their personal data
and requires the ability to delete this data when requested (right to erasure). It also
requires businesses to maintain detailed access logs and auditing processes
(Kamaruddin et al., 2023).

 7
• CCPA: Similar to GDPR, it enforces consumer rights to access, delete, and opt

out of personal data collection. It is primarily aimed at consumers in California,
USA (Nortwick and Wilson, 2022).

• HIPAA: Primarily governs the healthcare sector, enforcing data privacy and
security requirements for health information, with explicit requirements for
data storage, encryption, and access controls (Syed and Faiza Kousar E S,
2023).

Table 2: Summary of the Legal and Regulatory Consideration for the Database

Requirement Relational Database

Document Database

GDPR Compliance

Supports structured
consent records but less
flexible; manual handling
may be required for
consent withdrawal.

Flexible in
accommodating user-
specific data requests like
consent withdrawal.

Data Encryption

Typically includes
support for encryption
(at rest, in transit).

Provides encryption
support at both storage
(at rest) and transit
levels.

Data Residency

Stored in specific server
locations; easy to
manage under
jurisdiction laws.

Distributed clusters
complicate residency and
may require
configurations for
compliance.

Access Control and
Breach Reporting

Advanced RBAC support,
logs, and audit trails are
available to meet
compliance standards.

Role-based access
control and audit logging
are available; robust
replication and
monitoring required for
compliance.

2.4 Critical Analysis

• Gaps or Limitations:
o Relational databases generally excel with structured, consistent data,

but their ability to scale horizontally is limited, which may pose
challenges for handling large, dynamic datasets (Ranjitha and
Santhirakumar, 2022). Also, adapting to schema changes (e.g., adding
new movie attributes) can be cumbersome.

o Document databases, although highly flexible and scalable, face
challenges in ensuring strict data consistency (since they follow the
BASE model instead of ACID), which may be a risk in applications
requiring full transactional consistency (Reddy, et al., 2022).

• Alignment with Project Needs:
Based on prior research and the project requirements (handling millions of
movie records with flexible, dynamic schema updates), Document databases
appear more aligned with the needs of this online movie search engine.
MongoDB, for example, provides high scalability and schema flexibility, making
it ideal for an evolving dataset. Additionally, its strong support for data

 8
consistency (even with eventual consistency) and scalability through horizontal
sharding makes it suitable for handling large and distributed data (MongoDB,
2024).

• Scalability, Schema Updates, and Legal Compliance:
Document databases like MongoDB align well with scalability and schema
updates by allowing easy changes to data structure and distributing the data
load across servers (MongoDB, 2024). However, careful configuration will be
required to handle legal compliance, especially data residency and encryption
standards, but MongoDB can be set up in compliant regions and supports
necessary security features (encryption, role-based access controls).

In conclusion, while relational databases have their advantages in terms of data
consistency and query capabilities, document databases (specifically MongoDB)
provide the flexibility, scalability, and easier schema evolution necessary for this
project to manage large volumes of dynamic movie metadata while ensuring
compliance with relevant regulations.

3. Addressing the Requirements
This section critically evaluates how each examined database type—relational
Databases (RDBMS) and Document Databases (specifically MongoDB)—addresses the
key requirements outlined for the online movie search engine project.

3.1 Requirement 1: Schema Flexibility

• Relational Databases
Relational databases are typically characterized by rigid, predefined schemas.
Each table in a relational database needs to define columns in advance, and
these columns cannot be altered without significant downtime and
restructuring. While it is possible to add new columns, doing so can disrupt the
existing data structure, requiring schema migrations and making it more
cumbersome to introduce changes (Khan et al., 2023). This becomes
increasingly problematic as new fields or data types need to be incorporated
into the schema.

For this project, where the movie metadata may change (e.g., adding new fields for
new movie attributes), the relational database’s static schema design would be a
challenge to maintain flexibility over time. Hence, Relational Databases do not fully
satisfy the requirement of supporting dynamically updated schemas.

• Document Databases (MongoDB)
MongoDB, a document-oriented NoSQL database, offers a schema-less design,
where each document (e.g., representing a movie) can have different
structures. This makes it easy to add new fields or even completely new types
of data without altering existing documents (MongoDB, 2024). New attributes
such as new categories for movie genres or additional metadata can be added
as the application evolves, supporting the project's need for flexibility without
affecting the entire database structure.

Thus, Document Databases like MongoDB excellently satisfy the requirement of
dynamically updating the schema.

3.2 Requirement 2: Scalability

• Relational Databases
While relational databases are efficient for handling moderate amounts of
structured data, they typically scale vertically (i.e., adding more powerful

 9
hardware to a single machine) (Khan et al., 2023). This limits their scalability,
especially when large-scale data growth is expected (i.e., an increase from
5,000 to millions of records). To scale horizontally across a distributed system,
relational databases require complex sharding strategies, and even then, it
remains challenging to maintain performance and consistency at large scales
(Diaz Erazo et al., 2022).

Thus, Relational Databases do not offer an optimal solution for horizontal scalability,
which is required for a project with expected large data growth and the need for
distribution across multiple servers.

• Document Databases (MongoDB)
MongoDB, by design, is optimized for horizontal scaling. It supports sharding,
which allows data to be distributed across multiple machines and thus enables
the database to scale horizontally. Each "shard" in a MongoDB cluster is
responsible for a subset of data, and as the dataset grows from 5,000 to
millions of records, MongoDB can continue to scale efficiently by adding new
nodes to the cluster without significant reconfiguration or performance loss
(MongoDB, 2024). This makes MongoDB highly suitable for handling massive
datasets and for scaling out across large computer clusters.

Hence, MongoDB perfectly satisfies the scalability requirement, as it can support
large-scale collections through horizontal distribution.

3.3 Requirement 3: Data Consistency

• Relational Databases
Relational databases follow the ACID (Atomicity, Consistency, Isolation,
Durability) model, ensuring strong consistency. This model guarantees that
transactions are processed in a way that leaves the database in a consistent
state, with no partial or conflicting updates (Elmasri & Navathe, 2015). This
strong consistency makes relational databases a good fit for applications
where data integrity and correctness are critical (e.g., banking, financial
systems).

For the movie search engine project, relational databases satisfy the need for strong
data consistency. The use of transactions and ACID guarantees ensures that all
systems in the cluster will maintain a consistent view of movie data.

• Document Databases (MongoDB)
MongoDB uses the BASE (Basically Available, Soft state, Eventual consistency)
model rather than ACID, meaning that it emphasizes high availability and
partition tolerance, and the system may temporarily allow inconsistent states
while asynchronously converging towards consistency (Cabral et al., 2023) In
MongoDB, each read operation might not necessarily reflect the most up-to-
date state of data (especially in sharded setups), which could be a risk if strict
consistency is required at all times.

Although MongoDB supports configurable consistency guarantees for specific
operations (such as read and write concerns), it typically provides eventual
consistency, which might be a limitation for the project where real-time data
consistency across the system is crucial. If strict consistency is needed, additional
mechanisms and configurations such as multi-document transactions can be
leveraged (Khan et al., 2023), but they may have some performance overhead.
In conclusion, Relational Databases fully satisfy the need for strong consistency,
whereas MongoDB provides eventual consistency by default, but can achieve
stronger consistency with configuration changes.

 10

3.4 Requirement 4: High Availability

• Relational Databases
While high availability can be achieved in relational databases through
replication and clustering (e.g., PostgreSQL with synchronous replication,
MySQL with master-slave replication), it usually requires complex
configurations and management (Do et al., 2022). For this specific project,
where major updates will happen rarely and the demand for continuous
availability is not extreme, relational databases are capable of achieving high
availability as long as proper disaster recovery and backup strategies are in
place.

Therefore, Relational Databases can support high availability but require more
complex setup and maintenance compared to document databases.

• Document Databases (MongoDB)
MongoDB is designed for high availability from the ground up. It uses replica
sets, where data is automatically replicated across multiple servers. If one
node goes down, another replica can take over, ensuring minimal service
disruption (Carvalho, Sá and Bernardino, 2023). MongoDB's high availability
features are inherent to its design, and it simplifies disaster recovery by
replicating data across nodes with automatic failover.

Since high availability is a desired feature for this project, MongoDB supports it
excellently with built-in high availability features that are easy to implement.

4. Recommendation
4.1 Restate the Objective
The purpose of this study was to evaluate different database types for managing
movie metadata in an online search engine and recommend the most suitable
solution based on the project’s requirements, including schema flexibility, scalability,
data consistency, availability, and legal compliance.
4.2 Summarise Key Findings

• Relational Database:
o Strengths: Provides strong data consistency with ACID compliance,

making it ideal for structured data and transactional consistency. It
excels in handling complex queries using SQL.

o Weaknesses: Lacks schema flexibility, making it challenging to modify
the database structure as the project evolves. Vertical scaling, limited
to hardware upgrades, is often less efficient than horizontal scaling for
large datasets.

• Document Database (MongoDB):
o Strengths: MongoDB offers flexible, schema-less data storage, allowing

easy updates and the ability to handle dynamic data. It is horizontally
scalable, efficiently managing growth by distributing the data across
servers. High availability features, like replica sets, add reliability.

o Weaknesses: MongoDB uses eventual consistency by default, which
can complicate scenarios requiring immediate consistency. However,
tunable consistency options can be adjusted for specific use cases.

4.3 Recommendation of Database Type
A Document Database (MongoDB) is recommended for this project, as it best meets
the project’s requirements:

 11
• Schema Flexibility: MongoDB’s schema-less design is ideal for the evolving

structure of movie metadata, enabling easy addition of fields without requiring
database downtime.

• Scalability: MongoDB is designed for horizontal scaling through sharding,
allowing it to grow with the dataset. As the database transitions from 5,000 to
millions of records, MongoDB can scale efficiently across distributed systems.

• Data Consistency: MongoDB offers tunable consistency models, providing
eventual consistency by default, but with options to configure stronger
consistency for critical operations.

• High Availability: MongoDB’s replica sets automatically handle failover,
ensuring the database remains available even in the event of system failures,
aligning with the project's need for reliability during major updates.

4.4 Recommendation of Database Engine
MongoDB is the recommended database engine due to:

• Performance: It is optimized for both read and write-heavy applications,
ensuring quick queries and data insertion, crucial for an online search engine
with frequent updates.

• Industry Adoption: MongoDB is widely adopted in various industries, offering
substantial community support and mature ecosystem tools.

• Feature Alignment: With built-in sharding, replication, and flexible schema,
MongoDB aligns perfectly with the scalability and flexibility needs of this
project.

4.5 Legal Implications
MongoDB supports legal compliance through:

• Encryption: MongoDB offers encryption at rest and in transit to ensure
sensitive data protection.

• Access Control: Its role-based access control (RBAC) secures data access,
adhering to legal frameworks like GDPR.

• Audit Logging: MongoDB enables audit logging to track data changes,
supporting compliance and traceability.

4.6 Expected Benefits
Using MongoDB enhances:

• Scalability: It can handle millions of records and scale seamlessly as the
database grows.

• User Experience: Faster data retrieval and updates improve overall user
experience.

• Cost-Effectiveness: Horizontal scaling makes MongoDB a cost-effective, long-
term solution.

4.7 Conclusion
MongoDB is the optimal choice for the project, providing scalability, flexibility, and
compliance with legal requirements. Its adoption ensures a reliable, efficient, and
future-proof movie search engine.

 12

 5 Reference

1. ALI, A., NAEEM, S., ANAM, S., and AHMED, M., 2023. A State of Art Survey for
Big Data Processing and NoSQL Database Architecture. International Journal of
Computing and Digital Systems. 14 (1), pp. 297–309.

2. ANDERSON, B. and NICHOLSON, B., 2024. SQL vs NoSQL. Ibm.com [online].
Available from: https://www.ibm.com/think/topics/sql-vs-nosql? [Accessed 21
Dec 2024].

3. CABRAL, J.V.L., NOGUERA, V.E.R., CIFERRI, R.R., and LUCRÉDIO, D., 2023.
Enabling schema-independent data retrieval queries in MongoDB. Information
Systems. 114, p. 102165.

4. CARVALHO, I., SÁ, F., and BERNARDINO, J., 2023. Performance Evaluation of
NoSQL Document Databases: Couchbase, CouchDB, and MongoDB.
Algorithms. 16 (2), p. 78.

5. DIAZ ERAZO, A.D., RAUL MORALES MORALES, M., PINEDA CHAVEZ, V.K., and
LEONARDO MORALES CARDOSO, S., 2022. Comparative Analysis of
performance for SQL and NoSQL Databases. 2022 17th Iberian Conference on
Information Systems and Technologies (CISTI).

6. DO, T.-T.-T., MAI-HOANG, T.-B., NGUYEN, V.-Q., and HUYNH, Q.-T., 2022. Query-
based Performance Comparison of Graph Database and Relational Database.
The 11th International Symposium on Information and Communication
Technology.

7. GUO, R., LUAN, X., XIANG, L., YAN, X., YI, X., LUO, J., CHENG, Q., XU, W., LUO, J.,
LIU, F., CAO, Z., QIAO, Y., WANG, T., TANG, B., and XIE, C., 2022. Manu: A Cloud
Native Vector Database Management System. arXiv:2206.13843 [cs] [online].
Available from: https://arxiv.org/abs/2206.13843.

8. HOSEN, M.S., ISLAM, R., Naeem, FOLORUNSO, E.O., CHU, T.S., AL MAMUN,
M.A., and ORUNBON, N.O., 2024. Data-Driven Decision Making: Advanced
Database Systems for Business Intelligence. Nanotechnology Perceptions. 20
(3), pp. 687–704.

9. KAMARUDDIN, S., MOHAMMAD, A.M., SAUFI, N.N.M., ROSLI, W.R.W.,
OTHMAN, M.B., and HAMIN, Z., 2023. Compliance to GDPR Data Protection
and Privacy in Artificial Intelligence Technology: Legal and Ethical Ramifications
in Malaysia. IEEE Xplore [online]. Available from:
https://ieeexplore.ieee.org/abstract/document/10150615?casa_token=pKKun
H042SUAAAAA:RzYPYZLdHWI-di3PZ95UNr-
ENGHg7dbyWxfGmA7mDQkGM_tpRYkN4H8E8W7RA8WpeuYdr5wMWg
[Accessed 6 Sep 2023].

10. KHAN, M.Z., ZAMAN, F.U., ADNAN, M., IMROZ, A., RAUF, M.A., and PHUL, Z.,
2023. Comparative Case Study: An Evaluation of Performance Computation
between SQL and NoSQL Database. Journal of Software Engineering [online]. 1
(2), pp. 14–23. Available from:
http://sjhse.smiu.edu.pk/sjhse/index.php/SJHSE/article/view/42.

11. MARTINS, P., ALTIGRAN DA SILVA, AFONSO, A., CAVALCANTI, J., and EDLENO DE
MOURA, 2023. Supporting Schema References in Keyword Queries Over
Relational Databases. IEEE Access. 11, pp. 92365–92390.

12. MONGODB, 2024. What Is NoSQL? NoSQL Databases Explained. MongoDB
[online]. Available from:
https://www.mongodb.com/resources/basics/databases/nosql-explained.

 13
13. NGCOBO, K., BHENGU, S., MUDAU, A., THANGO, B., and LERATO, M., 2024.

Enterprise Data Management: Types, Sources, and Real-Time Applications to
Enhance Business Performance - A Systematic Review. Enterprise Data
Management: Types, Sources, and Real-Time Applications to Enhance Business
Performance - A Systematic Review.

14. NORTWICK, M.V. and WILSON, C., 2022. Setting the Bar Low: Are Websites
Complying With the Minimum Requirements of the CCPA? Proceedings on
Privacy Enhancing Technologies [online]. Available from:
https://petsymposium.org/popets/2022/popets-2022-0030.php [Accessed 27
Dec 2024].

15. RANJITHA, P. and SANTHIRAKUMAR, S., 2022. The impact of covid - 19 on
households’ gem mining industry: a study based on Pelmadulla divisional
secretariat, Ratnapura district. Seu.ac.lk [online]. Available from:
http://ir.lib.seu.ac.lk/handle/123456789/6892.

16. REDDY, REDDY, JONNALAGADDA, R., SINGH, P., and GOGINENI, A., 2022.
Analysis of the Unexplored Security Issues Common to All Types of NoSQL
Databases - Academic Digital Library. Article4sub.com [online]. 14 (1). Available
from: http://publications.article4sub.com/id/eprint/285/.

17. SYED, F.M. and FAIZA KOUSAR E S, 2023. Leveraging AI for HIPAA-Compliant
Cloud Security in Healthcare. Revista de Inteligencia Artificial en Medicina
[online]. 14 (1), pp. 461–484. Available from:
http://redcrevistas.com/index.php/Revista/article/view/146.

18. CEMIL ABIS and MURAT OSMAN UNALIR, 2017. A metamodel-based search
engine for document management systems. 2017 International Artificial
Intelligence and Data Processing Symposium (IDAP) [online]. pp. 1–8. Available
from:
https://ieeexplore.ieee.org/abstract/document/8090177?casa_token=skl69db
Gll4AAAAA:lQathdoBhfFuIOcD4W9vl0coB50FHUIJ4PD23tduT19dh3leGy2fzXd4
gboQhi3viV4db4CWDrMg [Accessed 11 Jan 2025].

