
1

Faculty of Arts and Science

The Department of Computer Science

CIS4513

Machine Learning

Level 7

Coursework 2

2024/2025

Module Leader: Dr. Huaizhong (Sam) Zhang

Predictive Model For Loan Approval

Student Names ID
Sunday Idika 2***

Obioma Aguwa 25***
Arinze Louis Igbo 259***

2

Team Contribution

The team initiated their collaborative efforts by scheduling a physical meeting.

During this initial meeting, the team convened to brainstorm and outline a strategic

approach to accomplishing the task. Recognizing the need for efficient

communication and role assignment, the team collectively agreed to create a

WhatsApp group and designate a leader and a secretary. Sunday was unanimously

chosen as the team leader, while Obioma was selected as the secretary. Arinze was

tasked with creating the WhatsApp group. By the conclusion of the meeting, the

team resolved to conduct thorough research on various topics, along with

identifying their aims and objectives.

The second meeting was conducted virtually through WhatsApp video

conferencing. During this session, team members presented their respective topics

with the aim of selecting one. The meeting, facilitated by the team leader, involved

an analysis of the proposed topics. Following detailed discussions, the team

unanimously agreed on a single topic: Predictive Model for Loan Approval.

Subsequently, roles were assigned based on the strengths of individual members.

Obioma and Sunday were tasked with handling data preprocessing and ensuring the

code was effectively written, while Arinze was entrusted with preparing,

documenting, and drafting the report.

The third meeting, held via WhatsApp, saw Arinze coordinating the discussions as

requested by the team. During this session, Obioma and Sunday presented their

progress on the assigned tasks. The team collectively reviewed their work, providing

feedback and suggesting amendments. Arinze was instructed to continue developing

the report and present a completed draft during the next meeting.

The final meeting was held physically, with Obioma coordinating the session at the

leader's request. At this meeting, Arinze presented the finalized report. The team

meticulously reviewed the document and proposed further amendments. Upon

integrating the suggested changes, the team unanimously agreed to submit both the

completed code and the accompanying report.

Lessons Learnt during the team work:

3

1. Skill development

The teamwork provided the members with opportunities to learn from each

other, develop new skills, and improve existing ones through collaboration

and shared experiences.

2. Shared Workload

The team members learnt that tasks and responsibilities can be distributed

among team members, reducing individual workloads and enabling more

efficient completion of tasks.

3. Enhanced Communication

The teamwork encouraged the members to have open communication,

thereby helping members improve their interpersonal and communication

skills.

4. Motivation and Support

Working in a team can be motivating, as members encourage and support

each other, fostering a sense of accountability.

5. Achievement of Common Goals

The team members focused on shared objectives, ensuring that all members

are aligned toward achieving the same goals, which fosters a sense of unity

and purpose.

Challenge Encountered:

Time Management Challenges

In the course of completing the work, the team encountered time

management challenges, especially in organizing meetings, coordinating

tasks, and aligning schedules due to other coursework and individual

schedule but was managed effectively, hence achieved the team goal.

4

Abstract

This study examines the application of machine learning models to predict loan

approval decisions using applicant and loan-related features. The dataset includes

variables such as gender, marital status, income, credit history, and property area,

among others. Three models—Decision Tree Classifier, Support Vector Machine

(SVM), and Random Forest Classifier—were evaluated based on their performance

metrics, including accuracy, precision, recall, F1-score, and confusion matrix

analysis. The SVM model achieved the highest accuracy (78.86%) and recall for loan

approvals, while the Random Forest model exhibited balanced performance across

both classes. Challenges such as class imbalance and missing data were addressed,

with findings revealing a bias towards predicting loan approvals. The study

concludes that machine learning models, particularly SVM and Random Forest, can

effectively predict loan approvals, with recommendations for future work including

advanced models such as XGBoost, hyperparameter tuning, and enhanced feature

engineering. Addressing class imbalance and ethical considerations remains essential

for improving model reliability and fairness.

Keywords: Loan Approval Prediction, Machine Learning, Support Vector Machine,

Random Forest, Decision Tree, Class Imbalance, Model Evaluation, Hyperparameter

Tuning, Credit Risk Analysis.

5

Table of Contents

1. Introduction 6

2. Data Exploration and Preprocessing 8

3. Methodology 16

4. Results 20

5. Discussion 24

6. Conclusion and Recommendations 25

7. References 27

8. Appendices 29

6

1. Introduction

Overview of the Problem

In this report, we aim to develop a machine-learning solution to predict loan

approval status using various supervised learning algorithms. The dataset consists of

information about applicants and their financial details, such as income, credit

history, and loan amount. The goal is to use this data to train models and predict

whether an applicant is approved for a loan ("Loan_Status").

Purpose and Goals

The main objective of this report is to evaluate and compare the effectiveness of

different classification algorithms such as Decision Trees, Support Vector Machines

(SVM), and Random Forest for predicting loan approval status. This task involves:

1. Preprocessing the data, including handling missing values, encoding

categorical features, and scaling numerical values.

2. Training models on the preprocessed data and evaluating their performance

using appropriate metrics.

3. Addressing potential challenges, such as class imbalance.

4. Optimizing model parameters to achieve better performance.

5. Critically evaluating the results to determine which model is the most

effective for loan approval prediction.

Structure of the Report

The report is structured as follows:

• Introduction: Overview of the problem, purpose, and objectives of the

project.

• Data Preparation and Preprocessing: Explanation of the dataset, how the data

was cleaned and preprocessed, and the features used for training the models.

• Modeling and Evaluation: The different models employed, hyperparameter

tuning, handling of class imbalance, and how the models were evaluated.

• Results: Discussion of model performance, accuracy, confusion matrix,

classification report, and potential issues with the models.

• Conclusion: Summary of the key findings from the project and

recommendations for improvements.

• Appendix: Screenshots of the source code and documentation.

1.1 Background

7

Loan approval is a critical function within the financial sector, serving as a

fundamental enabler of economic growth by providing individuals and businesses

with access to credit. Traditionally, this process relied on manual evaluations, where

financial institutions assessed applicants' eligibility based on a combination of

financial documents, credit histories, and subjective judgment. While effective in

smaller, localized settings, these manual methods often suffered from inefficiencies,

prolonged processing times, and susceptibility to human biases, leading to

inconsistencies and inequities in decision-making (Lipshitz and Shulimovitz, 2007).

The emergence of predictive modelling, underpinned by advances in data science

and machine learning, has revolutionized the loan approval landscape. These models

utilize historical data, encompassing applicant characteristics such as geographic

location, income, employment status, and other demographic factors, to predict

loan approval outcomes with precision. Unlike traditional approaches, predictive

models are scalable, offering financial institutions the ability to process large

volumes of applications quickly while minimizing biases. The integration of

machine learning algorithms enhances model adaptability, enabling continuous

improvement and better alignment with dynamic financial environments (Kumar

and Vijayalakshmi, 2024).

Furthermore, predictive modelling aligns with the broader digital transformation

trends in the financial industry, where data-driven decision-making is increasingly

being prioritized. By analyzing patterns in past loan approval data, institutions can

uncover insights into risk factors and customer behaviors that inform more equitable

lending practices. This innovation supports financial institutions in addressing

modern challenges, such as extending services to underserved populations and

promoting financial inclusion, while maintaining regulatory compliance and risk

management standards (Tong et al., 2024).

1.2 Objective

The primary objective of this study is to develop a robust predictive model for loan

approval by leveraging training and test datasets enriched with geographic and

demographic features. The study aims to apply and compare multiple machine

learning algorithms, assessing their performance to identify the most effective model

for predicting loan statuses. The ultimate goal is to enhance decision-making

processes within financial institutions by providing an efficient, accurate, and

unbiased loan approval framework.

8

1.3 Significance

The significance of this study lies in its ability to address long-standing challenges

in the loan approval process. By introducing predictive modeling, financial

institutions can overcome the limitations of traditional methods, such as inefficiency

and bias, and shift toward a more standardized, transparent, and equitable system.

Enhanced accuracy and speed in loan approval decisions reduce operational costs,

improve customer experiences, and contribute to overall institutional efficiency

(Tenev, 2024).

Incorporating geographic and demographic data into predictive models adds a

critical dimension to understanding diverse applicant profiles. This supports efforts

to promote financial inclusion, particularly in underbanked regions and among

marginalized populations. Moreover, the study emphasizes the role of machine

learning in fostering innovation in the financial sector, demonstrating how data-

driven decision-making can address modern economic challenges while adhering to

ethical and regulatory considerations. As predictive modeling becomes an essential

tool for financial institutions, this study provides valuable insights into its

implementation and benefits, contributing to the evolution of equitable credit

systems worldwide.

2. Data Exploration and Preprocessing

2.1. Overview of the Datasets

• Description of the Training Dataset

The training dataset consists of several attributes that provide information

about loan applicants. These include personal demographic details, income

information, and loan-specific attributes. The target variable, Loan_Status,

indicates whether a loan was approved (Y) or denied (N). The training dataset

is used to train machine learning models for predicting the loan approval

status.

First five rows of the training dataset (before preprocessing):

9

• Description of the Test Dataset

The test dataset follows the same structure as the training dataset but does

not contain the Loan_Status target variable. This dataset is used to evaluate

the performance of the models and make predictions on unseen data. The

features in the test dataset are similar to those in the training dataset, ensuring

that the models can make reliable predictions.

First five rows of the test dataset (before preprocessing):

10

2.2. Initial Data Analysis

• Inspecting Dataset Structure

The structure of both the training and test datasets was examined to

understand the number of features, the types of variables, and the overall

dimensions. The training dataset consists of 614 rows and 13 columns, while

the test dataset has 367 rows and 12 columns. Key features in the datasets

include both numerical and categorical variables, such as ApplicantIncome,

CoapplicantIncome, LoanAmount, Gender, Married, and Education. The

Loan_Status variable in the training dataset serves as the target variable,

whereas the test dataset lacks this target.

• Missing Values Analysis

A thorough analysis of missing values was conducted across both the training

and test datasets. Missing values are a common occurrence in real-world

datasets and require appropriate handling before model training. In the

training dataset, several variables contained missing values, including

LoanAmount, CoapplicantIncome, and Self_Employed. Similar missing data

11

patterns were observed in the test dataset. The presence of missing values in

these columns was quantified to determine the extent of the issue. Methods

for imputing or handling these missing values were then discussed and

applied to ensure the datasets were prepared for subsequent preprocessing

steps.

12

2.3. Data Cleaning

• Handling Missing Values

13

Missing values in the training and test datasets were addressed using

imputation techniques. For numerical features, such as LoanAmount and

CoapplicantIncome, missing values were imputed with the median value to

maintain the integrity of the data distribution. For categorical features, such

as Self_Employed and Dependents, missing values were filled with the most

frequent category. These imputation methods ensure that the datasets are

complete and ready for modeling, reducing the risk of bias or inaccuracies in

subsequent analyses.

• Outlier Detection and Capping (IQR Method)

Outliers were identified and handled using the Interquartile Range (IQR)

method. The IQR method calculates the range between the first and third

quartiles (Q1 and Q3) of a feature and defines outliers as values outside the

range of Q1 - 1.5IQR and Q3 + 1.5IQR. Any data points that fell outside this

range were considered outliers. These outliers were capped to the nearest

acceptable value, ensuring that extreme values do not disproportionately

affect the model's performance. This process helps to improve the robustness

and accuracy of the machine learning models.

14

15

2.4. Feature Engineering

• Creation of Derived Features (e.g., EMI, Total Income)

Several new features were created to provide additional insights into the data.

For instance, the EMI (Equated Monthly Installment) was calculated by

dividing the LoanAmount by the Loan_Amount_Term, assuming that the

loan term is measured in months. Similarly, the Total_Income feature was

derived by summing the ApplicantIncome and CoapplicantIncome to capture

the combined income of the loan applicant and their coapplicant. These new

features help in providing more context for model predictions.

• Log Transformations for Skewed Distributions

Certain numerical features, such as LoanAmount and Total_Income,

exhibited skewed distributions. To address this, log transformations were

applied to these features to normalize their distribution and reduce the

influence of extreme values. The logarithmic transformation helps in

stabilizing variance and improving the model's performance by making the

data more suitable for machine learning algorithms, which often perform

better with normally distributed data.

2.5. Encoding Categorical Features

• abel Encoding

Label encoding was applied to categorical features in the dataset to convert

them into numerical values that machine learning models can interpret.

Categorical columns such as Gender, Married, Dependents, Self_Employed,

Education, Credit_History, and Property_Area were encoded using label

encoding. In this technique, each category within a feature is assigned a

unique integer. For example, the Gender column was encoded with 'Male' as

1 and 'Female' as 0. Similarly, other categorical variables were transformed

into numerical format, allowing them to be used as input features in

16

subsequent model training processes. This transformation is crucial for

models that require numerical input, such as decision trees or support vector

machines.

2.6. Scaling and Standardization

• Standardization of Numerical Features

Standardization was applied to the numerical features of the dataset to bring

them onto a similar scale. This process is essential for many machine learning

algorithms, especially those that rely on distance-based metrics, such as

support vector machines and k-nearest neighbors. Standardization involves

transforming the data so that each feature has a mean of 0 and a standard

deviation of 1. The numerical columns, including LoanAmount,

Loan_Amount_Term, Credit_History, ApplicantIncome,

CoapplicantIncome, Total_Income, EMI, LoanAmount_log, and

Total_Income_log, were standardized using the StandardScaler method. This

ensures that all features contribute equally to the model and improves the

performance of algorithms that are sensitive to the scale of input data.

3. Methodology

3.1. Problem Statement

The objective of this study is to predict whether a loan application will be approved

or not, based on various applicant and loan-related features. The target variable,

Loan_Status, indicates whether a loan was approved (denoted as 'Y') or rejected

17

(denoted as 'N'). The dataset consists of several features, including personal

information of the applicant (e.g., Gender, Married, Dependents, Self_Employed),

financial details (e.g., ApplicantIncome, CoapplicantIncome, LoanAmount), and

loan information (e.g., Loan_Amount_Term, Credit_History, Property_Area). The

task involves building and evaluating machine learning models to classify the loan

status based on these features, with the ultimate goal of creating a model that

accurately predicts loan approval decisions.

3.2. Machine Learning Techniques

Decision Tree Classifier

The Decision Tree Classifier is a supervised machine learning algorithm used for

classification tasks. It creates a tree-like structure of decisions and their possible

consequences, allowing for easy interpretation and visualization. The algorithm

recursively splits the data into subsets based on feature values, ultimately creating a

model that can predict the target variable. Decision Trees are popular due to their

simplicity and interpretability, but they are prone to overfitting, particularly when

the tree is very deep (Nakahara et al., 2023).

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning technique

commonly used for classification problems. The core concept of SVM is to find a

hyperplane that best separates the data points of different classes. The goal is to

maximize the margin, or distance, between the closest points of each class (also

known as support vectors). SVM is effective in high-dimensional spaces and is widely

used for tasks such as image recognition and text classification (Ikram et al., 2023).

Random Forest Classifier

Random Forest is an ensemble learning method that combines multiple decision

trees to improve the model's accuracy and robustness. Each tree in the random

forest is trained on a random subset of the training data, and the final prediction is

based on the majority vote of all the trees. This technique helps to reduce

overfitting, making Random Forest a reliable method for classification tasks,

especially when dealing with large and complex datasets (Newaz et al., 2024).

3.3. Evaluation Metrics

Accuracy

18

Accuracy is one of the most common metrics for evaluating the performance of

classification models. It is calculated as the ratio of the number of correct predictions

to the total number of predictions. While accuracy provides a quick measure of

model performance, it can be misleading in cases of imbalanced datasets, where a

model may predict the majority class more often (Holzmann and Klar, 2024).

Precision, Recall, F1-Score

Precision, recall, and F1-score are alternative metrics used to evaluate classification

models, especially when the data is imbalanced.

• Precision measures the proportion of positive predictions that are actually

correct. It is defined as the ratio of true positives to the sum of true positives

and false positives. Precision is important when the cost of false positives is

high (Holzmann and Klar, 2024).

• Recall (also known as sensitivity or true positive rate) measures the

proportion of actual positives that are correctly identified by the model. It is

defined as the ratio of true positives to the sum of true positives and false

negatives. Recall is critical when the cost of false negatives is high.

• F1-Score is the harmonic mean of precision and recall. It provides a balance

between the two metrics, making it useful when there is a need to balance

the trade-off between precision and recall (Holzmann and Klar, 2024).

Confusion Matrix

The confusion matrix is a table that summarizes the performance of a classification

model by showing the number of true positives, true negatives, false positives, and

false negatives. It provides a deeper insight into the types of errors made by the

model and is useful for calculating precision, recall, and F1-score. The confusion

matrix is especially helpful when evaluating models on imbalanced datasets, as it

highlights the specific misclassifications (Aguilar-Ruiz and Michalak, 2024).

3.4. Train-Test Split and Validation Strategies

Train-test split and validation strategies are essential techniques in machine learning

to evaluate the performance of a model and avoid overfitting. The process involves

splitting the dataset into two subsets: one for training the model and another for

evaluating its performance. This helps assess how well the model generalizes to

unseen data.

Train-Test Split

19

The train-test split technique involves dividing the dataset into two parts: a training

set and a testing set. Typically, the training set is used to train the model, while the

testing set is reserved for evaluating the model's performance. A common practice

is to allocate 70-80% of the data for training and the remaining 20-30% for testing

(Aguilar-Ruiz and Michalak, 2024). This division ensures that the model is trained

on a substantial amount of data while retaining an independent set of data for

evaluation.

Cross-Validation

Cross-validation is a more robust validation technique that addresses the limitation

of the train-test split by dividing the dataset into multiple subsets or "folds." The

model is trained on a subset of the data and validated on the remaining fold. This

process is repeated for each fold, and the model's performance is averaged over all

iterations. Cross-validation helps to reduce the variability in model performance and

provides a more reliable estimate of its generalization ability (Iyengar, Lam and

Wang, 2024).

One common form of cross-validation is k-fold cross-validation, where the dataset

is divided into k folds. In each iteration, the model is trained on k-1 folds and tested

on the remaining fold, ensuring that every data point is used for both training and

validation. This method is particularly effective when dealing with smaller datasets.

Stratified Sampling

In cases of imbalanced datasets, where the distribution of classes is not uniform,

stratified sampling ensures that each fold of the cross-validation process contains a

proportional representation of each class. This approach helps to mitigate bias

introduced by underrepresented classes and ensures that the model is trained and

evaluated on a balanced subset of the data (Iyengar, Lam and Wang, 2024).

Hyperparameter Tuning

Hyperparameter tuning is an essential part of model validation that involves

optimizing the model's hyperparameters to improve its performance. This can be

done using grid search or randomized search methods, which systematically explore

a predefined set of hyperparameter values and identify the best combination based

on model performance (Navon and Bronstein, 2022). Cross-validation can be

incorporated into hyperparameter tuning to provide more robust results by

evaluating each combination on different folds of the data.

20

4. Results

4.1. Model Training Performance

The performance of each machine learning model was evaluated during training.

The models tested include the Decision Tree Classifier, Support Vector Machine

(SVM), and Random Forest Classifier.

• Decision Tree Classifier Performance: The Decision Tree model achieved an

accuracy of 74.80% on the validation set, with precision, recall, and F1-score

values for each class indicating a relatively balanced performance between

classes. The confusion matrix revealed 23 false negatives and 69 true positives

for the "Y" class, while the "N" class had 20 false positives and 11 true

negatives.

• Support Vector Machine Performance: The SVM model delivered an accuracy

of 78.86% on the validation data. For the "Y" class, it demonstrated a high

recall value of 0.99, indicating that it effectively identified the majority of

positive instances. However, the recall for the "N" class was relatively lower

at 0.42, suggesting a higher rate of false positives.

21

• Random Forest Classifier Performance: The Random Forest model achieved

an accuracy of 76.42%. Precision for the "Y" class was high at 0.76, while

recall was also significant, showcasing the model's ability to predict positive

instances accurately. The confusion matrix showed 20 false positives and 74

true positives for the "Y" class, along with 23 false negatives and 6 true

negatives for the "N" class.

4.2. Validation Results

• Accuracy, Precision, Recall, and F1-Score: The validation results for each

model were analyzed using the following metrics:

o Accuracy: The SVM model outperformed the others with an accuracy

of 78.86%, followed by the Random Forest Classifier at 76.42%, and

the Decision Tree at 74.80%.

22

o Precision: SVM showed high precision for the "Y" class, followed by

the Random Forest, and then the Decision Tree.

o Recall: The recall for the "Y" class was highest in the SVM model,

demonstrating its proficiency in identifying positive instances, though

the recall for the "N" class was higher for the Random Forest model.

o F1-Score: The F1-score, which balances precision and recall, was

highest for the SVM, followed by Random Forest and Decision Tree.

• Confusion Matrix Analysis: The confusion matrices for each model

highlighted the trade-offs between false positives and false negatives:

o Decision Tree: The confusion matrix indicated a relatively balanced

number of true positives and false negatives in the "Y" class but a

moderate number of false positives in the "N" class.

o SVM: Despite its high recall for the "Y" class, the SVM model had a

substantial number of false positives for the "N" class, highlighting a

trade-off between precision and recall.

o Random Forest: The Random Forest model had a relatively balanced

confusion matrix with fewer false positives than the SVM.

4.3. Test Data Predictions

• Predictions for Test Data using Support Vector Machine: The predictions for

the test data were made using the SVM model. The model predicted a

significant proportion of "Y" outcomes, indicating a preference towards

23

classifying loans as approved. The predicted labels were consistent with the

performance on the validation set, where the recall for the "Y" class was

particularly high.

4.4. Comparison of Models

A comparison of the three models—Decision Tree, SVM, and Random Forest—

demonstrated differing strengths:

• Decision Tree: The Decision Tree classifier exhibited moderate accuracy and

balanced performance between precision and recall, particularly for the "Y"

class.

• Support Vector Machine: SVM provided the best overall accuracy and recall

for the "Y" class but showed a trade-off with the "N" class, as it had a lower

recall for negative predictions.

• Random Forest: Random Forest showed solid performance across both

classes, with relatively balanced precision and recall. It proved to be a strong

contender, providing competitive results across all evaluation metrics.

In conclusion, the SVM model performed best in terms of accuracy and recall for

the "Y" class, while the Random Forest model exhibited more balanced performance

across both classes.

24

5. Discussion

5.1. Key Insights

• Model Performance Insights: The machine learning models tested, including

the Decision Tree, Support Vector Machine (SVM), and Random Forest,

demonstrated varying levels of performance. The SVM model achieved the

highest accuracy and recall for the "Y" class, which represents loan approval.

However, it exhibited a trade-off with the "N" class, showing a lower recall

and a higher number of false positives. The Random Forest model showed a

more balanced performance across both classes, though it did not surpass the

SVM in terms of accuracy. The Decision Tree, while simpler, also provided

satisfactory results, especially in terms of interpretability.

• Prediction Trends (Bias Towards "Y" for Loan Approval): A notable

observation was the bias towards predicting the "Y" class for loan approval,

especially in the SVM model. This trend suggests that the model may be more

likely to classify loans as approved, which could be attributed to the class

imbalance present in the dataset. In practice, this bias could lead to a higher

number of false positives, potentially causing more loans to be approved than

necessary.

5.2. Challenges and Observations

• Model Bias (Class Imbalance): One of the primary challenges observed in the

analysis was the class imbalance between loan approvals ("Y") and denials

("N"). This imbalance affected the performance of all models, particularly the

SVM, which showed high recall for the "Y" class but struggled with accurate

predictions for the "N" class. The model's tendency to favor the majority class

(loan approval) resulted in a skewed performance that did not fully capture

the characteristics of both classes.

• Handling of Missing Values and Imbalances: Another challenge encountered

was the handling of missing values and imbalances in the dataset. While

techniques such as imputation were used to address missing data, and

resampling methods were considered to tackle class imbalance, these issues

may have impacted the models' ability to generalize. Imbalanced datasets can

lead to models that are overfit to the majority class, which, in turn, affects

overall prediction accuracy.

25

5.3. Limitations of the Study

• Lack of Hyperparameter Tuning: A limitation of this study was the absence

of hyperparameter tuning for the models. Although the models were trained

using default parameters, fine-tuning the hyperparameters could have

improved performance by optimizing for specific characteristics of the

dataset, such as depth of the decision tree, choice of kernel for the SVM, or

the number of estimators in the Random Forest. Hyperparameter

optimization is a crucial step in enhancing model performance, which was

not addressed in this analysis.

• Imbalanced Class Distribution: The class imbalance in the dataset was another

limitation that affected model performance. Although various techniques,

such as resampling or adjusting class weights, could have been applied to

address this issue, the imbalance still posed a significant challenge. An

imbalanced distribution often leads to biased models that tend to favor the

majority class, impacting the predictive power for the minority class.

6. Conclusion and Recommendations

6.1. Summary of Findings

• Model Performance and Predictive Power: The analysis of multiple machine

learning models—Decision Tree, Support Vector Machine (SVM), and

Random Forest—revealed differences in their performance. The SVM model

demonstrated strong predictive power, particularly in identifying loan

approvals ("Y"), but exhibited some bias towards the majority class, resulting

in less accurate predictions for loan denials ("N"). The Random Forest model

provided a more balanced performance across both classes, while the

Decision Tree model offered interpretability with satisfactory results. Overall,

the models were effective in predicting loan approvals but faced challenges

due to class imbalance, which impacted their ability to predict loan denials

accurately.

6.2. Recommendations for Improvement

• Addressing Class Imbalance: The issue of class imbalance, where loan

approvals ("Y") were more frequent than loan denials ("N"), was a significant

26

challenge in the predictive models. It is recommended to implement

techniques such as resampling (oversampling the minority class or

undersampling the majority class), using balanced class weights in model

training, or applying cost-sensitive learning methods. These approaches can

help mitigate bias towards the majority class and improve model performance

on the minority class.

• Model Tuning and Hyperparameter Optimization: Hyperparameter

optimization should be a key focus for improving model performance. While

the models were trained using default parameters, fine-tuning

hyperparameters such as the depth of decision trees, kernel selection for the

SVM, and the number of estimators in the Random Forest model could

enhance predictive accuracy. Techniques like grid search or random search

for hyperparameter tuning can be employed to find the optimal configuration

for each model, leading to improved overall performance.

6.3. Future Work Directions

• Exploring Different Models (e.g., XGBoost, Gradient Boosting): Future work

can explore the use of more advanced models, such as XGBoost or Gradient

Boosting Machines (GBM). These models are known for their high

performance, especially in imbalanced datasets, and could potentially

improve prediction accuracy for both classes. Their ability to handle non-

linearity and interactions between features could provide better insights and

predictions.

• Feature Selection and Engineering Improvements: Future studies could

further explore feature selection and engineering techniques to enhance

model performance. Identifying the most important features using methods

like recursive feature elimination (RFE) or feature importance from tree-

based models can reduce overfitting and improve the efficiency of the

models. Additionally, further improvements in feature engineering, such as

creating new variables or transforming existing ones, could provide additional

predictive power and contribute to more accurate and reliable predictions.

27

7. Reference List

AGUILARRUIZ, JESÚS S and MICHALAK, M., 2024. Classification performance

assessment for imbalanced multiclass data. Scientific Reports. 14 (1), p. 10759.

HOLZMANN, H. and KLAR, B., 2024. Robust performance metrics for imbalanced

classification problems. arXiv preprint arXiv:2404.07661.

IKRAM, F.D., JULKARNAIN, M., HAMDAN, F., and NURYADI, H., 2023.

Application of the Support Vector Machine (SVM) Algorithm for the Diagnosis of

Diabetic Retinopathy. Brilliance: Research of Artificial Intelligence. 3 (2), pp. 416–

422.

IYENGAR, G., LAM, H., and WANG, T., 2024. Is CrossValidation the Gold

Standard to Evaluate Model Performance? arXiv preprint arXiv:2407.02754.

KUMAR, V.S. and VIJAYALAKSHMI, K., 2024. PREDICTIVE MODELING FOR

LOAN APPROVAL: A MACHINE LEARNING APPROACH. EPRA International

Journal of Multidisciplinary Research (IJMR). 10 (5), pp. 650–656.

LIPSHITZ, R. and SHULIMOVITZ, N., 2007. Intuition and emotion in bank loan

officers’ credit decisions. Journal of Cognitive Engineering and Decision Making. 1

(2), pp. 212–233.

NAKAHARA, Y., SAITO, S., ICHIJO, N., KAZAMA, K., and MATSUSHIMA, T.,

2023. Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality

Based on Decision Trees as Data Observation Processes. arXiv preprint

arXiv:2306.07060.

NAVON, D. and BRONSTEIN, A.M., 2022. Random Search HyperParameter

tuning: expected improvement estimation and the corresponding lower bound.

arXiv preprint arXiv:2208.08170.

NEWAZ, A., SALMAN, M.M., NOMAN, A., and JABID, T., 2024. iBRF: Improved

Balanced Random Forest Classifier. In: 2024 35th Conference of Open Innovations

Association (FRUCT). IEEE. pp. 501–508.

TENEV, N., 2024. DeBiasing Models of Biased Decisions: A Comparison of

Methods Using Mortgage Application Data. arXiv preprint arXiv:2405.00910.

28

TONG, K., HAN, Z., SHEN, Y., LONG, Y., and WEI, Y., 2024. An Integrated

Machine Learning and Deep Learning Framework for Credit Card Approval

Prediction. In: 2024 IEEE 6th International Conference on Power, Intelligent

Computing and Systems (ICPICS). IEEE. pp. 853–858.

29

8. Appendices

8.1. Source Code

• Full Python Code for Data Preprocessing, Feature Engineering, Model

Training, and Evaluation:

import pandas as pd

Load the train and test datasets from the Downloads folder

train_data = pd.read_csv('Downloads/train.csv') # Adjust the path if needed

test_data = pd.read_csv('Downloads/test.csv') # Adjust the path if needed

Display the first few rows of each dataset

print("Train Dataset Preview:")

print(train_data.head())

print("\nTest Dataset Preview:")

print(test_data.head())

Check for missing values and data types in the training data

print("Training Data Info:")

print(train_data.info())

Check for missing values and data types in the test data

print("\nTest Data Info:")

print(test_data.info())

Summary statistics for the training data

print("Training Data Summary Statistics:")

print(train_data.describe())

Summary statistics for the test data

print("\nTest Data Summary Statistics:")

print(test_data.describe())

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

30

import os

from sklearn.preprocessing import StandardScaler

Handle missing values for categorical columns

categorical_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed',

'Education']

for col in categorical_columns:

 train_data[col] = train_data[col].fillna(train_data[col].mode()[0])

 test_data[col] = test_data[col].fillna(test_data[col].mode()[0])

Handle missing numerical columns

train_data['LoanAmount'] =

train_data['LoanAmount'].fillna(train_data['LoanAmount'].median())

test_data['LoanAmount'] =

test_data['LoanAmount'].fillna(test_data['LoanAmount'].median())

train_data['EMI'] = train_data['LoanAmount'] / train_data['Loan_Amount_Term']

test_data['EMI'] = test_data['LoanAmount'] / test_data['Loan_Amount_Term']

Fill missing 'Credit_History' with mode

train_data['Credit_History'] =

train_data['Credit_History'].fillna(train_data['Credit_History'].mode()[0])

test_data['Credit_History'] =

test_data['Credit_History'].fillna(test_data['Credit_History'].mode()[0])

Feature Engineering: Create new columns (e.g., Total Income, EMI)

train_data['Total_Income'] = train_data['ApplicantIncome'] +

train_data['CoapplicantIncome']

test_data['Total_Income'] = test_data['ApplicantIncome'] +

test_data['CoapplicantIncome']

Log transformation for skewed features

train_data['LoanAmount_log'] = np.log1p(train_data['LoanAmount'].clip(lower=0))

test_data['LoanAmount_log'] = np.log1p(test_data['LoanAmount'].clip(lower=0))

train_data['Total_Income_log'] =

np.log1p(train_data['Total_Income'].clip(lower=0))

31

test_data['Total_Income_log'] = np.log1p(test_data['Total_Income'].clip(lower=0))

Outlier Handling: Capping the outliers based on IQR (Interquartile Range)

method

def cap_outliers(df, col_name):

 Q1 = df[col_name].quantile(0.25)

 Q3 = df[col_name].quantile(0.75)

 IQR = Q3 - Q1

 lower_bound = Q1 - 1.5 * IQR

 upper_bound = Q3 + 1.5 * IQR

 df[col_name] = np.clip(df[col_name], lower_bound, upper_bound)

 return df

Apply outlier handling on numerical columns

numerical_columns = ['LoanAmount_log', 'ApplicantIncome', 'Total_Income_log',

'EMI', 'CoapplicantIncome']

for col in numerical_columns:

 train_data = cap_outliers(train_data, col)

 test_data = cap_outliers(test_data, col)

Standardization: Standardizing numerical columns for modeling

scaler = StandardScaler()

columns_to_scale = ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount_log',

'Total_Income_log', 'EMI']

train_data[columns_to_scale] = scaler.fit_transform(train_data[columns_to_scale])

test_data[columns_to_scale] = scaler.transform(test_data[columns_to_scale])

from sklearn.preprocessing import LabelEncoder

List of categorical columns to encode (excluding the target variable

'Loan_Status')

categorical_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed',

'Education', 'Credit_History', 'Property_Area']

Initialize label encoder

label_encoder = LabelEncoder()

32

Apply label encoding to categorical columns in the training and test datasets

for column in categorical_columns:

 if train_data[column].dtype == 'object': # Check if the column is categorical

 # Encoding the training data

 train_data[column] =

label_encoder.fit_transform(train_data[column].astype(str))

 # Encoding the test data (using the same labels from the training data)

 test_data[column] = label_encoder.transform(test_data[column].astype(str))

Ensure all categorical columns are encoded correctly

print("Training Data After Label Encoding:")

print(train_data.head())

print("\nTest Data After Label Encoding:")

print(test_data.head())

from sklearn.impute import SimpleImputer

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler, OneHotEncoder

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

Split the data into features (X) and target (y)

X = train_data.drop(columns=['Loan_Status']) # Features

y = train_data['Loan_Status'] # Target

Split the data into training and validation sets

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2,

random_state=42)

Define categorical and numerical columns based on the data provided

33

categorical_cols = ['Gender', 'Married', 'Dependents', 'Self_Employed']

numerical_cols = ['LoanAmount', 'Loan_Amount_Term', 'Credit_History',

'ApplicantIncome', 'CoapplicantIncome', 'Total_Income', 'EMI',

'LoanAmount_log', 'Total_Income_log']

Create an imputer for categorical data (impute with most frequent value)

categorical_imputer = SimpleImputer(strategy='most_frequent')

Create an imputer for numerical data (impute with median value)

numerical_imputer = SimpleImputer(strategy='median')

Create a scaler for numerical data (StandardScaler)

scaler = StandardScaler()

Create the column transformer that applies different imputers and scaling for

categorical and numerical columns

preprocessor = ColumnTransformer(

 transformers=[

 ('num', Pipeline([

 ('imputer', numerical_imputer),

 ('scaler', scaler)

]), numerical_cols),

 ('cat', Pipeline([

 ('imputer', categorical_imputer),

 ('encoder', OneHotEncoder(handle_unknown='ignore')) # Handle

unknown categories safely

]), categorical_cols)

])

Models

decision_tree = Pipeline([

 ('preprocessor', preprocessor),

 ('classifier', DecisionTreeClassifier(random_state=42))

])

svm = Pipeline([

 ('preprocessor', preprocessor),

34

 ('classifier', SVC(random_state=42))

])

random_forest = Pipeline([

 ('preprocessor', preprocessor),

 ('classifier', RandomForestClassifier(random_state=42))

])

Train the models

decision_tree.fit(X_train, y_train)

svm.fit(X_train, y_train)

random_forest.fit(X_train, y_train)

Make predictions on the validation set

dt_predictions = decision_tree.predict(X_val)

svm_predictions = svm.predict(X_val)

rf_predictions = random_forest.predict(X_val)

Evaluate the models

print("Decision Tree Classifier Performance:")

print("Accuracy:", accuracy_score(y_val, dt_predictions))

print(classification_report(y_val, dt_predictions))

print(confusion_matrix(y_val, dt_predictions))

print("\nSupport Vector Machine Performance:")

print("Accuracy:", accuracy_score(y_val, svm_predictions))

print(classification_report(y_val, svm_predictions))

print(confusion_matrix(y_val, svm_predictions))

print("\nRandom Forest Classifier Performance:")

print("Accuracy:", accuracy_score(y_val, rf_predictions))

print(classification_report(y_val, rf_predictions))

print(confusion_matrix(y_val, rf_predictions))

Make predictions on the preprocessed test dataset

svm_predictions = svm.predict(test_data)

35

Print the predictions

print("Support Vector Machine Predictions on Test Data:")

print(svm_predictions)

import matplotlib.pyplot as plt

import numpy as np

Metrics for classifiers

classifiers = ['Decision Tree', 'SVM', 'Random Forest']

metrics = ['Accuracy', 'Precision', 'Recall', 'F1-Score']

decision_tree = [0.7479, 0.73, 0.70, 0.71]

svm = [0.7886, 0.85, 0.70, 0.72]

random_forest = [0.7642, 0.77, 0.70, 0.71]

Bar chart properties

x = np.arange(len(metrics)) # Positions for groups

width = 0.25 # Bar width

Plotting the bar chart

fig, ax = plt.subplots(figsize=(10, 6))

bars1 = ax.bar(x - width, decision_tree, width, label='Decision Tree', color='b',

edgecolor='black')

bars2 = ax.bar(x, svm, width, label='SVM', color='g', edgecolor='black')

bars3 = ax.bar(x + width, random_forest, width, label='Random Forest', color='r',

edgecolor='black')

Adding labels, title, and legend

ax.set_xlabel('Metrics')

ax.set_ylabel('Scores')

ax.set_title('Comparison of Classifier Performance')

ax.set_xticks(x)

ax.set_xticklabels(metrics)

ax.legend()

36

Displaying values on top of bars

for bars in [bars1, bars2, bars3]:

 for bar in bars:

 yval = bar.get_height()

 ax.text(bar.get_x() + bar.get_width() / 2, yval + 0.01, f'{yval:.2f}', ha='center',

va='bottom')

plt.tight_layout()

plt.show()

