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Team Contribution 

The team initiated their collaborative efforts by scheduling a physical meeting. 

During this initial meeting, the team convened to brainstorm and outline a strategic 

approach to accomplishing the task. Recognizing the need for efficient 

communication and role assignment, the team collectively agreed to create a 

WhatsApp group and designate a leader and a secretary. Sunday was unanimously 

chosen as the team leader, while Obioma was selected as the secretary. Arinze was 

tasked with creating the WhatsApp group. By the conclusion of the meeting, the 

team resolved to conduct thorough research on various topics, along with 

identifying their aims and objectives. 

The second meeting was conducted virtually through WhatsApp video 

conferencing. During this session, team members presented their respective topics 

with the aim of selecting one. The meeting, facilitated by the team leader, involved 

an analysis of the proposed topics. Following detailed discussions, the team 

unanimously agreed on a single topic: Predictive Model for Loan Approval. 

Subsequently, roles were assigned based on the strengths of individual members. 

Obioma and Sunday were tasked with handling data preprocessing and ensuring the 

code was effectively written, while Arinze was entrusted with preparing, 

documenting, and drafting the report. 

 

The third meeting, held via WhatsApp, saw Arinze coordinating the discussions as 

requested by the team. During this session, Obioma and Sunday presented their 

progress on the assigned tasks. The team collectively reviewed their work, providing 

feedback and suggesting amendments. Arinze was instructed to continue developing 

the report and present a completed draft during the next meeting. 

The final meeting was held physically, with Obioma coordinating the session at the 

leader's request. At this meeting, Arinze presented the finalized report. The team 

meticulously reviewed the document and proposed further amendments. Upon 

integrating the suggested changes, the team unanimously agreed to submit both the 

completed code and the accompanying report. 

 

Lessons Learnt during the team work: 
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1. Skill development 

 

The teamwork provided the members with opportunities to learn from each 

other, develop new skills, and improve existing ones through collaboration 

and shared experiences. 

 

2. Shared Workload 

The team members learnt that tasks and responsibilities can be distributed 

among team members, reducing individual workloads and enabling more 

efficient completion of tasks. 

 

3. Enhanced Communication 

The teamwork encouraged the members to have open communication, 

thereby helping members improve their interpersonal and communication 

skills. 

 

4. Motivation and Support 

Working in a team can be motivating, as members encourage and support 

each other, fostering a sense of accountability. 

 

5. Achievement of Common Goals 

The team members focused on shared objectives, ensuring that all members 

are aligned toward achieving the same goals, which fosters a sense of unity 

and purpose. 

 

Challenge Encountered: 

 

Time Management Challenges 

In the course of completing the work, the team encountered time 

management challenges, especially in organizing meetings, coordinating 

tasks, and aligning schedules due to other coursework and individual 

schedule but was managed effectively, hence achieved the team goal. 
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Abstract 

This study examines the application of machine learning models to predict loan 

approval decisions using applicant and loan-related features. The dataset includes 

variables such as gender, marital status, income, credit history, and property area, 

among others. Three models—Decision Tree Classifier, Support Vector Machine 

(SVM), and Random Forest Classifier—were evaluated based on their performance 

metrics, including accuracy, precision, recall, F1-score, and confusion matrix 

analysis. The SVM model achieved the highest accuracy (78.86%) and recall for loan 

approvals, while the Random Forest model exhibited balanced performance across 

both classes. Challenges such as class imbalance and missing data were addressed, 

with findings revealing a bias towards predicting loan approvals. The study 

concludes that machine learning models, particularly SVM and Random Forest, can 

effectively predict loan approvals, with recommendations for future work including 

advanced models such as XGBoost, hyperparameter tuning, and enhanced feature 

engineering. Addressing class imbalance and ethical considerations remains essential 

for improving model reliability and fairness. 

Keywords: Loan Approval Prediction, Machine Learning, Support Vector Machine, 

Random Forest, Decision Tree, Class Imbalance, Model Evaluation, Hyperparameter 

Tuning, Credit Risk Analysis. 
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1. Introduction 

Overview of the Problem 

In this report, we aim to develop a machine-learning solution to predict loan 

approval status using various supervised learning algorithms. The dataset consists of 

information about applicants and their financial details, such as income, credit 

history, and loan amount. The goal is to use this data to train models and predict 

whether an applicant is approved for a loan ("Loan_Status"). 

 

Purpose and Goals 

The main objective of this report is to evaluate and compare the effectiveness of 

different classification algorithms such as Decision Trees, Support Vector Machines 

(SVM), and Random Forest for predicting loan approval status. This task involves: 

1. Preprocessing the data, including handling missing values, encoding 

categorical features, and scaling numerical values. 

2. Training models on the preprocessed data and evaluating their performance 

using appropriate metrics. 

3. Addressing potential challenges, such as class imbalance. 

4. Optimizing model parameters to achieve better performance. 

5. Critically evaluating the results to determine which model is the most 

effective for loan approval prediction. 

 

Structure of the Report 

The report is structured as follows: 

• Introduction: Overview of the problem, purpose, and objectives of the 

project. 

• Data Preparation and Preprocessing: Explanation of the dataset, how the data 

was cleaned and preprocessed, and the features used for training the models. 

• Modeling and Evaluation: The different models employed, hyperparameter 

tuning, handling of class imbalance, and how the models were evaluated. 

• Results: Discussion of model performance, accuracy, confusion matrix, 

classification report, and potential issues with the models. 

• Conclusion: Summary of the key findings from the project and 

recommendations for improvements. 

• Appendix: Screenshots of the source code and documentation. 

 

1.1 Background 
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Loan approval is a critical function within the financial sector, serving as a 

fundamental enabler of economic growth by providing individuals and businesses 

with access to credit. Traditionally, this process relied on manual evaluations, where 

financial institutions assessed applicants' eligibility based on a combination of 

financial documents, credit histories, and subjective judgment. While effective in 

smaller, localized settings, these manual methods often suffered from inefficiencies, 

prolonged processing times, and susceptibility to human biases, leading to 

inconsistencies and inequities in decision-making (Lipshitz and Shulimovitz, 2007). 

  

The emergence of predictive modelling, underpinned by advances in data science 

and machine learning, has revolutionized the loan approval landscape. These models 

utilize historical data, encompassing applicant characteristics such as geographic 

location, income, employment status, and other demographic factors, to predict 

loan approval outcomes with precision. Unlike traditional approaches, predictive 

models are scalable, offering financial institutions the ability to process large 

volumes of applications quickly while minimizing biases. The integration of 

machine learning algorithms enhances model adaptability, enabling continuous 

improvement and better alignment with dynamic financial environments (Kumar 

and Vijayalakshmi, 2024). 

 

Furthermore, predictive modelling aligns with the broader digital transformation 

trends in the financial industry, where data-driven decision-making is increasingly 

being prioritized. By analyzing patterns in past loan approval data, institutions can 

uncover insights into risk factors and customer behaviors that inform more equitable 

lending practices. This innovation supports financial institutions in addressing 

modern challenges, such as extending services to underserved populations and 

promoting financial inclusion, while maintaining regulatory compliance and risk 

management standards (Tong et al., 2024). 

 

1.2 Objective 

The primary objective of this study is to develop a robust predictive model for loan 

approval by leveraging training and test datasets enriched with geographic and 

demographic features. The study aims to apply and compare multiple machine 

learning algorithms, assessing their performance to identify the most effective model 

for predicting loan statuses. The ultimate goal is to enhance decision-making 

processes within financial institutions by providing an efficient, accurate, and 

unbiased loan approval framework. 
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1.3 Significance 

The significance of this study lies in its ability to address long-standing challenges 

in the loan approval process. By introducing predictive modeling, financial 

institutions can overcome the limitations of traditional methods, such as inefficiency 

and bias, and shift toward a more standardized, transparent, and equitable system. 

Enhanced accuracy and speed in loan approval decisions reduce operational costs, 

improve customer experiences, and contribute to overall institutional efficiency 

(Tenev, 2024). 

 

Incorporating geographic and demographic data into predictive models adds a 

critical dimension to understanding diverse applicant profiles. This supports efforts 

to promote financial inclusion, particularly in underbanked regions and among 

marginalized populations. Moreover, the study emphasizes the role of machine 

learning in fostering innovation in the financial sector, demonstrating how data-

driven decision-making can address modern economic challenges while adhering to 

ethical and regulatory considerations. As predictive modeling becomes an essential 

tool for financial institutions, this study provides valuable insights into its 

implementation and benefits, contributing to the evolution of equitable credit 

systems worldwide. 

 

2. Data Exploration and Preprocessing 

 

2.1. Overview of the Datasets 

• Description of the Training Dataset 

The training dataset consists of several attributes that provide information 

about loan applicants. These include personal demographic details, income 

information, and loan-specific attributes. The target variable, Loan_Status, 

indicates whether a loan was approved (Y) or denied (N). The training dataset 

is used to train machine learning models for predicting the loan approval 

status. 

 

First five rows of the training dataset (before preprocessing): 
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• Description of the Test Dataset 

The test dataset follows the same structure as the training dataset but does 

not contain the Loan_Status target variable. This dataset is used to evaluate 

the performance of the models and make predictions on unseen data. The 

features in the test dataset are similar to those in the training dataset, ensuring 

that the models can make reliable predictions. 

First five rows of the test dataset (before preprocessing): 
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2.2. Initial Data Analysis 

• Inspecting Dataset Structure 

The structure of both the training and test datasets was examined to 

understand the number of features, the types of variables, and the overall 

dimensions. The training dataset consists of 614 rows and 13 columns, while 

the test dataset has 367 rows and 12 columns. Key features in the datasets 

include both numerical and categorical variables, such as ApplicantIncome, 

CoapplicantIncome, LoanAmount, Gender, Married, and Education. The 

Loan_Status variable in the training dataset serves as the target variable, 

whereas the test dataset lacks this target. 

 

• Missing Values Analysis 

A thorough analysis of missing values was conducted across both the training 

and test datasets. Missing values are a common occurrence in real-world 

datasets and require appropriate handling before model training. In the 

training dataset, several variables contained missing values, including 

LoanAmount, CoapplicantIncome, and Self_Employed. Similar missing data 
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patterns were observed in the test dataset. The presence of missing values in 

these columns was quantified to determine the extent of the issue. Methods 

for imputing or handling these missing values were then discussed and 

applied to ensure the datasets were prepared for subsequent preprocessing 

steps. 
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2.3. Data Cleaning 

• Handling Missing Values 
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Missing values in the training and test datasets were addressed using 

imputation techniques. For numerical features, such as LoanAmount and 

CoapplicantIncome, missing values were imputed with the median value to 

maintain the integrity of the data distribution. For categorical features, such 

as Self_Employed and Dependents, missing values were filled with the most 

frequent category. These imputation methods ensure that the datasets are 

complete and ready for modeling, reducing the risk of bias or inaccuracies in 

subsequent analyses. 

 

 
 

• Outlier Detection and Capping (IQR Method) 

Outliers were identified and handled using the Interquartile Range (IQR) 

method. The IQR method calculates the range between the first and third 

quartiles (Q1 and Q3) of a feature and defines outliers as values outside the 

range of Q1 - 1.5IQR and Q3 + 1.5IQR. Any data points that fell outside this 

range were considered outliers. These outliers were capped to the nearest 

acceptable value, ensuring that extreme values do not disproportionately 

affect the model's performance. This process helps to improve the robustness 

and accuracy of the machine learning models. 
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2.4. Feature Engineering 

• Creation of Derived Features (e.g., EMI, Total Income) 

Several new features were created to provide additional insights into the data. 

For instance, the EMI (Equated Monthly Installment) was calculated by 

dividing the LoanAmount by the Loan_Amount_Term, assuming that the 

loan term is measured in months. Similarly, the Total_Income feature was 

derived by summing the ApplicantIncome and CoapplicantIncome to capture 

the combined income of the loan applicant and their coapplicant. These new 

features help in providing more context for model predictions. 

 

 
 

• Log Transformations for Skewed Distributions 

Certain numerical features, such as LoanAmount and Total_Income, 

exhibited skewed distributions. To address this, log transformations were 

applied to these features to normalize their distribution and reduce the 

influence of extreme values. The logarithmic transformation helps in 

stabilizing variance and improving the model's performance by making the 

data more suitable for machine learning algorithms, which often perform 

better with normally distributed data. 

 

 
2.5. Encoding Categorical Features 

• abel Encoding 

Label encoding was applied to categorical features in the dataset to convert 

them into numerical values that machine learning models can interpret. 

Categorical columns such as Gender, Married, Dependents, Self_Employed, 

Education, Credit_History, and Property_Area were encoded using label 

encoding. In this technique, each category within a feature is assigned a 

unique integer. For example, the Gender column was encoded with 'Male' as 

1 and 'Female' as 0. Similarly, other categorical variables were transformed 

into numerical format, allowing them to be used as input features in 
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subsequent model training processes. This transformation is crucial for 

models that require numerical input, such as decision trees or support vector 

machines. 

 

 
 

2.6. Scaling and Standardization 

• Standardization of Numerical Features 

Standardization was applied to the numerical features of the dataset to bring 

them onto a similar scale. This process is essential for many machine learning 

algorithms, especially those that rely on distance-based metrics, such as 

support vector machines and k-nearest neighbors. Standardization involves 

transforming the data so that each feature has a mean of 0 and a standard 

deviation of 1. The numerical columns, including LoanAmount, 

Loan_Amount_Term, Credit_History, ApplicantIncome, 

CoapplicantIncome, Total_Income, EMI, LoanAmount_log, and 

Total_Income_log, were standardized using the StandardScaler method. This 

ensures that all features contribute equally to the model and improves the 

performance of algorithms that are sensitive to the scale of input data. 

 

 
 

3. Methodology 

3.1. Problem Statement 

The objective of this study is to predict whether a loan application will be approved 

or not, based on various applicant and loan-related features. The target variable, 

Loan_Status, indicates whether a loan was approved (denoted as 'Y') or rejected 
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(denoted as 'N'). The dataset consists of several features, including personal 

information of the applicant (e.g., Gender, Married, Dependents, Self_Employed), 

financial details (e.g., ApplicantIncome, CoapplicantIncome, LoanAmount), and 

loan information (e.g., Loan_Amount_Term, Credit_History, Property_Area). The 

task involves building and evaluating machine learning models to classify the loan 

status based on these features, with the ultimate goal of creating a model that 

accurately predicts loan approval decisions. 

 

3.2. Machine Learning Techniques 

Decision Tree Classifier 

The Decision Tree Classifier is a supervised machine learning algorithm used for 

classification tasks. It creates a tree-like structure of decisions and their possible 

consequences, allowing for easy interpretation and visualization. The algorithm 

recursively splits the data into subsets based on feature values, ultimately creating a 

model that can predict the target variable. Decision Trees are popular due to their 

simplicity and interpretability, but they are prone to overfitting, particularly when 

the tree is very deep (Nakahara et al., 2023). 

 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised machine learning technique 

commonly used for classification problems. The core concept of SVM is to find a 

hyperplane that best separates the data points of different classes. The goal is to 

maximize the margin, or distance, between the closest points of each class (also 

known as support vectors). SVM is effective in high-dimensional spaces and is widely 

used for tasks such as image recognition and text classification (Ikram et al., 2023). 

 

Random Forest Classifier 

Random Forest is an ensemble learning method that combines multiple decision 

trees to improve the model's accuracy and robustness. Each tree in the random 

forest is trained on a random subset of the training data, and the final prediction is 

based on the majority vote of all the trees. This technique helps to reduce 

overfitting, making Random Forest a reliable method for classification tasks, 

especially when dealing with large and complex datasets (Newaz et al., 2024). 

 

3.3. Evaluation Metrics 

Accuracy 
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Accuracy is one of the most common metrics for evaluating the performance of 

classification models. It is calculated as the ratio of the number of correct predictions 

to the total number of predictions. While accuracy provides a quick measure of 

model performance, it can be misleading in cases of imbalanced datasets, where a 

model may predict the majority class more often (Holzmann and Klar, 2024). 

 

Precision, Recall, F1-Score 

Precision, recall, and F1-score are alternative metrics used to evaluate classification 

models, especially when the data is imbalanced. 

• Precision measures the proportion of positive predictions that are actually 

correct. It is defined as the ratio of true positives to the sum of true positives 

and false positives. Precision is important when the cost of false positives is 

high (Holzmann and Klar, 2024). 

• Recall (also known as sensitivity or true positive rate) measures the 

proportion of actual positives that are correctly identified by the model. It is 

defined as the ratio of true positives to the sum of true positives and false 

negatives. Recall is critical when the cost of false negatives is high. 

• F1-Score is the harmonic mean of precision and recall. It provides a balance 

between the two metrics, making it useful when there is a need to balance 

the trade-off between precision and recall (Holzmann and Klar, 2024). 

 

Confusion Matrix 

The confusion matrix is a table that summarizes the performance of a classification 

model by showing the number of true positives, true negatives, false positives, and 

false negatives. It provides a deeper insight into the types of errors made by the 

model and is useful for calculating precision, recall, and F1-score. The confusion 

matrix is especially helpful when evaluating models on imbalanced datasets, as it 

highlights the specific misclassifications (Aguilar-Ruiz and Michalak, 2024). 

 

3.4. Train-Test Split and Validation Strategies 

Train-test split and validation strategies are essential techniques in machine learning 

to evaluate the performance of a model and avoid overfitting. The process involves 

splitting the dataset into two subsets: one for training the model and another for 

evaluating its performance. This helps assess how well the model generalizes to 

unseen data. 

 

Train-Test Split 
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The train-test split technique involves dividing the dataset into two parts: a training 

set and a testing set. Typically, the training set is used to train the model, while the 

testing set is reserved for evaluating the model's performance. A common practice 

is to allocate 70-80% of the data for training and the remaining 20-30% for testing 

(Aguilar-Ruiz and Michalak, 2024). This division ensures that the model is trained 

on a substantial amount of data while retaining an independent set of data for 

evaluation. 

 

Cross-Validation 

Cross-validation is a more robust validation technique that addresses the limitation 

of the train-test split by dividing the dataset into multiple subsets or "folds." The 

model is trained on a subset of the data and validated on the remaining fold. This 

process is repeated for each fold, and the model's performance is averaged over all 

iterations. Cross-validation helps to reduce the variability in model performance and 

provides a more reliable estimate of its generalization ability (Iyengar, Lam and 

Wang, 2024). 

 

One common form of cross-validation is k-fold cross-validation, where the dataset 

is divided into k folds. In each iteration, the model is trained on k-1 folds and tested 

on the remaining fold, ensuring that every data point is used for both training and 

validation. This method is particularly effective when dealing with smaller datasets. 

 

Stratified Sampling 

In cases of imbalanced datasets, where the distribution of classes is not uniform, 

stratified sampling ensures that each fold of the cross-validation process contains a 

proportional representation of each class. This approach helps to mitigate bias 

introduced by underrepresented classes and ensures that the model is trained and 

evaluated on a balanced subset of the data (Iyengar, Lam and Wang, 2024). 

 

Hyperparameter Tuning 

Hyperparameter tuning is an essential part of model validation that involves 

optimizing the model's hyperparameters to improve its performance. This can be 

done using grid search or randomized search methods, which systematically explore 

a predefined set of hyperparameter values and identify the best combination based 

on model performance (Navon and Bronstein, 2022). Cross-validation can be 

incorporated into hyperparameter tuning to provide more robust results by 

evaluating each combination on different folds of the data. 
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4. Results 

4.1. Model Training Performance 

The performance of each machine learning model was evaluated during training. 

The models tested include the Decision Tree Classifier, Support Vector Machine 

(SVM), and Random Forest Classifier. 

• Decision Tree Classifier Performance: The Decision Tree model achieved an 

accuracy of 74.80% on the validation set, with precision, recall, and F1-score 

values for each class indicating a relatively balanced performance between 

classes. The confusion matrix revealed 23 false negatives and 69 true positives 

for the "Y" class, while the "N" class had 20 false positives and 11 true 

negatives. 

 

 
• Support Vector Machine Performance: The SVM model delivered an accuracy 

of 78.86% on the validation data. For the "Y" class, it demonstrated a high 

recall value of 0.99, indicating that it effectively identified the majority of 

positive instances. However, the recall for the "N" class was relatively lower 

at 0.42, suggesting a higher rate of false positives. 
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• Random Forest Classifier Performance: The Random Forest model achieved 

an accuracy of 76.42%. Precision for the "Y" class was high at 0.76, while 

recall was also significant, showcasing the model's ability to predict positive 

instances accurately. The confusion matrix showed 20 false positives and 74 

true positives for the "Y" class, along with 23 false negatives and 6 true 

negatives for the "N" class. 

 
 

4.2. Validation Results 

• Accuracy, Precision, Recall, and F1-Score: The validation results for each 

model were analyzed using the following metrics: 

o Accuracy: The SVM model outperformed the others with an accuracy 

of 78.86%, followed by the Random Forest Classifier at 76.42%, and 

the Decision Tree at 74.80%. 
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o Precision: SVM showed high precision for the "Y" class, followed by 

the Random Forest, and then the Decision Tree. 

o Recall: The recall for the "Y" class was highest in the SVM model, 

demonstrating its proficiency in identifying positive instances, though 

the recall for the "N" class was higher for the Random Forest model. 

o F1-Score: The F1-score, which balances precision and recall, was 

highest for the SVM, followed by Random Forest and Decision Tree. 

 
• Confusion Matrix Analysis: The confusion matrices for each model 

highlighted the trade-offs between false positives and false negatives: 

o Decision Tree: The confusion matrix indicated a relatively balanced 

number of true positives and false negatives in the "Y" class but a 

moderate number of false positives in the "N" class. 

o SVM: Despite its high recall for the "Y" class, the SVM model had a 

substantial number of false positives for the "N" class, highlighting a 

trade-off between precision and recall. 

o Random Forest: The Random Forest model had a relatively balanced 

confusion matrix with fewer false positives than the SVM. 

 

 

4.3. Test Data Predictions 

• Predictions for Test Data using Support Vector Machine: The predictions for 

the test data were made using the SVM model. The model predicted a 

significant proportion of "Y" outcomes, indicating a preference towards 
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classifying loans as approved. The predicted labels were consistent with the 

performance on the validation set, where the recall for the "Y" class was 

particularly high. 

 
 

4.4. Comparison of Models 

A comparison of the three models—Decision Tree, SVM, and Random Forest—

demonstrated differing strengths: 

• Decision Tree: The Decision Tree classifier exhibited moderate accuracy and 

balanced performance between precision and recall, particularly for the "Y" 

class. 

• Support Vector Machine: SVM provided the best overall accuracy and recall 

for the "Y" class but showed a trade-off with the "N" class, as it had a lower 

recall for negative predictions. 

• Random Forest: Random Forest showed solid performance across both 

classes, with relatively balanced precision and recall. It proved to be a strong 

contender, providing competitive results across all evaluation metrics. 

In conclusion, the SVM model performed best in terms of accuracy and recall for 

the "Y" class, while the Random Forest model exhibited more balanced performance 

across both classes. 

 



24 
 

5. Discussion 

5.1. Key Insights 

• Model Performance Insights: The machine learning models tested, including 

the Decision Tree, Support Vector Machine (SVM), and Random Forest, 

demonstrated varying levels of performance. The SVM model achieved the 

highest accuracy and recall for the "Y" class, which represents loan approval. 

However, it exhibited a trade-off with the "N" class, showing a lower recall 

and a higher number of false positives. The Random Forest model showed a 

more balanced performance across both classes, though it did not surpass the 

SVM in terms of accuracy. The Decision Tree, while simpler, also provided 

satisfactory results, especially in terms of interpretability. 

• Prediction Trends (Bias Towards "Y" for Loan Approval): A notable 

observation was the bias towards predicting the "Y" class for loan approval, 

especially in the SVM model. This trend suggests that the model may be more 

likely to classify loans as approved, which could be attributed to the class 

imbalance present in the dataset. In practice, this bias could lead to a higher 

number of false positives, potentially causing more loans to be approved than 

necessary. 

5.2. Challenges and Observations 

• Model Bias (Class Imbalance): One of the primary challenges observed in the 

analysis was the class imbalance between loan approvals ("Y") and denials 

("N"). This imbalance affected the performance of all models, particularly the 

SVM, which showed high recall for the "Y" class but struggled with accurate 

predictions for the "N" class. The model's tendency to favor the majority class 

(loan approval) resulted in a skewed performance that did not fully capture 

the characteristics of both classes. 

• Handling of Missing Values and Imbalances: Another challenge encountered 

was the handling of missing values and imbalances in the dataset. While 

techniques such as imputation were used to address missing data, and 

resampling methods were considered to tackle class imbalance, these issues 

may have impacted the models' ability to generalize. Imbalanced datasets can 

lead to models that are overfit to the majority class, which, in turn, affects 

overall prediction accuracy. 
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5.3. Limitations of the Study 

• Lack of Hyperparameter Tuning: A limitation of this study was the absence 

of hyperparameter tuning for the models. Although the models were trained 

using default parameters, fine-tuning the hyperparameters could have 

improved performance by optimizing for specific characteristics of the 

dataset, such as depth of the decision tree, choice of kernel for the SVM, or 

the number of estimators in the Random Forest. Hyperparameter 

optimization is a crucial step in enhancing model performance, which was 

not addressed in this analysis. 

• Imbalanced Class Distribution: The class imbalance in the dataset was another 

limitation that affected model performance. Although various techniques, 

such as resampling or adjusting class weights, could have been applied to 

address this issue, the imbalance still posed a significant challenge. An 

imbalanced distribution often leads to biased models that tend to favor the 

majority class, impacting the predictive power for the minority class. 

 

6. Conclusion and Recommendations 

6.1. Summary of Findings 

• Model Performance and Predictive Power: The analysis of multiple machine 

learning models—Decision Tree, Support Vector Machine (SVM), and 

Random Forest—revealed differences in their performance. The SVM model 

demonstrated strong predictive power, particularly in identifying loan 

approvals ("Y"), but exhibited some bias towards the majority class, resulting 

in less accurate predictions for loan denials ("N"). The Random Forest model 

provided a more balanced performance across both classes, while the 

Decision Tree model offered interpretability with satisfactory results. Overall, 

the models were effective in predicting loan approvals but faced challenges 

due to class imbalance, which impacted their ability to predict loan denials 

accurately. 

6.2. Recommendations for Improvement 

• Addressing Class Imbalance: The issue of class imbalance, where loan 

approvals ("Y") were more frequent than loan denials ("N"), was a significant 
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challenge in the predictive models. It is recommended to implement 

techniques such as resampling (oversampling the minority class or 

undersampling the majority class), using balanced class weights in model 

training, or applying cost-sensitive learning methods. These approaches can 

help mitigate bias towards the majority class and improve model performance 

on the minority class. 

• Model Tuning and Hyperparameter Optimization: Hyperparameter 

optimization should be a key focus for improving model performance. While 

the models were trained using default parameters, fine-tuning 

hyperparameters such as the depth of decision trees, kernel selection for the 

SVM, and the number of estimators in the Random Forest model could 

enhance predictive accuracy. Techniques like grid search or random search 

for hyperparameter tuning can be employed to find the optimal configuration 

for each model, leading to improved overall performance. 

6.3. Future Work Directions 

• Exploring Different Models (e.g., XGBoost, Gradient Boosting): Future work 

can explore the use of more advanced models, such as XGBoost or Gradient 

Boosting Machines (GBM). These models are known for their high 

performance, especially in imbalanced datasets, and could potentially 

improve prediction accuracy for both classes. Their ability to handle non-

linearity and interactions between features could provide better insights and 

predictions. 

• Feature Selection and Engineering Improvements: Future studies could 

further explore feature selection and engineering techniques to enhance 

model performance. Identifying the most important features using methods 

like recursive feature elimination (RFE) or feature importance from tree-

based models can reduce overfitting and improve the efficiency of the 

models. Additionally, further improvements in feature engineering, such as 

creating new variables or transforming existing ones, could provide additional 

predictive power and contribute to more accurate and reliable predictions. 
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8. Appendices 

8.1. Source Code 

• Full Python Code for Data Preprocessing, Feature Engineering, Model 

Training, and Evaluation:  

import pandas as pd 

 

# Load the train and test datasets from the Downloads folder 

train_data = pd.read_csv('Downloads/train.csv')  # Adjust the path if needed 

test_data = pd.read_csv('Downloads/test.csv')    # Adjust the path if needed 

 

# Display the first few rows of each dataset 

print("Train Dataset Preview:") 

print(train_data.head()) 

 

print("\nTest Dataset Preview:") 

print(test_data.head()) 

 

# Check for missing values and data types in the training data 

print("Training Data Info:") 

print(train_data.info()) 

 

# Check for missing values and data types in the test data 

print("\nTest Data Info:") 

print(test_data.info()) 

 

# Summary statistics for the training data 

print("Training Data Summary Statistics:") 

print(train_data.describe()) 

 

# Summary statistics for the test data 

print("\nTest Data Summary Statistics:") 

print(test_data.describe()) 

 

import pandas as pd 

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 
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import os 

from sklearn.preprocessing import StandardScaler 

 

# Handle missing values for categorical columns 

categorical_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed', 

'Education'] 

for col in categorical_columns: 

    train_data[col] = train_data[col].fillna(train_data[col].mode()[0]) 

    test_data[col] = test_data[col].fillna(test_data[col].mode()[0]) 

 

# Handle missing numerical columns 

train_data['LoanAmount'] = 

train_data['LoanAmount'].fillna(train_data['LoanAmount'].median()) 

test_data['LoanAmount'] = 

test_data['LoanAmount'].fillna(test_data['LoanAmount'].median()) 

 

train_data['EMI'] = train_data['LoanAmount'] / train_data['Loan_Amount_Term'] 

test_data['EMI'] = test_data['LoanAmount'] / test_data['Loan_Amount_Term'] 

 

# Fill missing 'Credit_History' with mode 

train_data['Credit_History'] = 

train_data['Credit_History'].fillna(train_data['Credit_History'].mode()[0]) 

test_data['Credit_History'] = 

test_data['Credit_History'].fillna(test_data['Credit_History'].mode()[0]) 

 

# Feature Engineering: Create new columns (e.g., Total Income, EMI) 

train_data['Total_Income'] = train_data['ApplicantIncome'] + 

train_data['CoapplicantIncome'] 

test_data['Total_Income'] = test_data['ApplicantIncome'] + 

test_data['CoapplicantIncome'] 

 

# Log transformation for skewed features 

train_data['LoanAmount_log'] = np.log1p(train_data['LoanAmount'].clip(lower=0)) 

test_data['LoanAmount_log'] = np.log1p(test_data['LoanAmount'].clip(lower=0)) 

 

train_data['Total_Income_log'] = 

np.log1p(train_data['Total_Income'].clip(lower=0)) 
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test_data['Total_Income_log'] = np.log1p(test_data['Total_Income'].clip(lower=0)) 

 

# Outlier Handling: Capping the outliers based on IQR (Interquartile Range) 

method 

def cap_outliers(df, col_name): 

    Q1 = df[col_name].quantile(0.25) 

    Q3 = df[col_name].quantile(0.75) 

    IQR = Q3 - Q1 

    lower_bound = Q1 - 1.5 * IQR 

    upper_bound = Q3 + 1.5 * IQR 

    df[col_name] = np.clip(df[col_name], lower_bound, upper_bound) 

    return df 

 

# Apply outlier handling on numerical columns 

numerical_columns = ['LoanAmount_log', 'ApplicantIncome', 'Total_Income_log', 

'EMI', 'CoapplicantIncome'] 

for col in numerical_columns: 

    train_data = cap_outliers(train_data, col) 

    test_data = cap_outliers(test_data, col) 

 

# Standardization: Standardizing numerical columns for modeling 

scaler = StandardScaler() 

columns_to_scale = ['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount_log', 

'Total_Income_log', 'EMI'] 

train_data[columns_to_scale] = scaler.fit_transform(train_data[columns_to_scale]) 

test_data[columns_to_scale] = scaler.transform(test_data[columns_to_scale]) 

 

from sklearn.preprocessing import LabelEncoder 

 

# List of categorical columns to encode (excluding the target variable 

'Loan_Status') 

categorical_columns = ['Gender', 'Married', 'Dependents', 'Self_Employed', 

'Education', 'Credit_History', 'Property_Area'] 

 

# Initialize label encoder 

label_encoder = LabelEncoder() 
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# Apply label encoding to categorical columns in the training and test datasets 

for column in categorical_columns: 

    if train_data[column].dtype == 'object':  # Check if the column is categorical 

        # Encoding the training data 

        train_data[column] = 

label_encoder.fit_transform(train_data[column].astype(str)) 

         

        # Encoding the test data (using the same labels from the training data) 

        test_data[column] = label_encoder.transform(test_data[column].astype(str)) 

 

# Ensure all categorical columns are encoded correctly 

print("Training Data After Label Encoding:") 

print(train_data.head()) 

 

print("\nTest Data After Label Encoding:") 

print(test_data.head()) 

 

from sklearn.impute import SimpleImputer 

from sklearn.compose import ColumnTransformer 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler, OneHotEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.svm import SVC 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, classification_report, 

confusion_matrix 

 

# Split the data into features (X) and target (y) 

X = train_data.drop(columns=['Loan_Status'])  # Features 

y = train_data['Loan_Status']  # Target 

 

# Split the data into training and validation sets 

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Define categorical and numerical columns based on the data provided 
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categorical_cols = ['Gender', 'Married', 'Dependents', 'Self_Employed'] 

numerical_cols = ['LoanAmount', 'Loan_Amount_Term', 'Credit_History', 

'ApplicantIncome', 'CoapplicantIncome', 'Total_Income', 'EMI', 

'LoanAmount_log', 'Total_Income_log'] 

 

# Create an imputer for categorical data (impute with most frequent value) 

categorical_imputer = SimpleImputer(strategy='most_frequent') 

 

# Create an imputer for numerical data (impute with median value) 

numerical_imputer = SimpleImputer(strategy='median') 

 

# Create a scaler for numerical data (StandardScaler) 

scaler = StandardScaler() 

 

# Create the column transformer that applies different imputers and scaling for 

categorical and numerical columns 

preprocessor = ColumnTransformer( 

    transformers=[ 

        ('num', Pipeline([ 

            ('imputer', numerical_imputer), 

            ('scaler', scaler) 

        ]), numerical_cols), 

        ('cat', Pipeline([ 

            ('imputer', categorical_imputer), 

            ('encoder', OneHotEncoder(handle_unknown='ignore'))  # Handle 

unknown categories safely 

        ]), categorical_cols) 

    ]) 

 

# Models 

decision_tree = Pipeline([ 

    ('preprocessor', preprocessor), 

    ('classifier', DecisionTreeClassifier(random_state=42)) 

]) 

 

svm = Pipeline([ 

    ('preprocessor', preprocessor), 
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    ('classifier', SVC(random_state=42)) 

]) 

 

random_forest = Pipeline([ 

    ('preprocessor', preprocessor), 

    ('classifier', RandomForestClassifier(random_state=42)) 

]) 

 

# Train the models 

decision_tree.fit(X_train, y_train) 

svm.fit(X_train, y_train) 

random_forest.fit(X_train, y_train) 

 

# Make predictions on the validation set 

dt_predictions = decision_tree.predict(X_val) 

svm_predictions = svm.predict(X_val) 

rf_predictions = random_forest.predict(X_val) 

 

# Evaluate the models 

print("Decision Tree Classifier Performance:") 

print("Accuracy:", accuracy_score(y_val, dt_predictions)) 

print(classification_report(y_val, dt_predictions)) 

print(confusion_matrix(y_val, dt_predictions)) 

 

print("\nSupport Vector Machine Performance:") 

print("Accuracy:", accuracy_score(y_val, svm_predictions)) 

print(classification_report(y_val, svm_predictions)) 

print(confusion_matrix(y_val, svm_predictions)) 

 

print("\nRandom Forest Classifier Performance:") 

print("Accuracy:", accuracy_score(y_val, rf_predictions)) 

print(classification_report(y_val, rf_predictions)) 

print(confusion_matrix(y_val, rf_predictions)) 

 

# Make predictions on the preprocessed test dataset 

svm_predictions = svm.predict(test_data) 
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# Print the predictions 

print("Support Vector Machine Predictions on Test Data:") 

print(svm_predictions) 

 

 

import matplotlib.pyplot as plt 

import numpy as np 

 

# Metrics for classifiers 

classifiers = ['Decision Tree', 'SVM', 'Random Forest'] 

metrics = ['Accuracy', 'Precision', 'Recall', 'F1-Score'] 

 

decision_tree = [0.7479, 0.73, 0.70, 0.71] 

svm = [0.7886, 0.85, 0.70, 0.72] 

random_forest = [0.7642, 0.77, 0.70, 0.71] 

 

# Bar chart properties 

x = np.arange(len(metrics))  # Positions for groups 

width = 0.25  # Bar width 

 

# Plotting the bar chart 

fig, ax = plt.subplots(figsize=(10, 6)) 

 

bars1 = ax.bar(x - width, decision_tree, width, label='Decision Tree', color='b', 

edgecolor='black') 

bars2 = ax.bar(x, svm, width, label='SVM', color='g', edgecolor='black') 

bars3 = ax.bar(x + width, random_forest, width, label='Random Forest', color='r', 

edgecolor='black') 

 

# Adding labels, title, and legend 

ax.set_xlabel('Metrics') 

ax.set_ylabel('Scores') 

ax.set_title('Comparison of Classifier Performance') 

ax.set_xticks(x) 

ax.set_xticklabels(metrics) 

ax.legend() 
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# Displaying values on top of bars 

for bars in [bars1, bars2, bars3]: 

    for bar in bars: 

        yval = bar.get_height() 

        ax.text(bar.get_x() + bar.get_width() / 2, yval + 0.01, f'{yval:.2f}', ha='center', 

va='bottom') 

 

plt.tight_layout() 

plt.show() 


